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Abstract. The recent scheme of approximants formed from double power series and pro- 
posed by Chisholm IS examined in relation to known functions containing simple singularities 
of the form (x - .x,(y))- ‘. in cases where .x,(y) is linear. Attention is focused on the usefulness 
of these approximants in determining sequences of approximations to the locus of singular- 
ities w,(yl. and the exponent ;‘. 

1. Introduction 

Within the last two years or so, a number of authors have attempted to generalize the 
rational approximation scheme known as the Pade approximant to approximation 
schemes for functions of two or more variables defined through a many-variable power 
series expansion (Chisholm 1973, Chisholm and McEwan 1974, Lutterodt 1974, Watson 
1974). The many-variable approximants of Chisholm and McEwan possess many of the 
algebraic properties of Pade approximants, which have been so very successful and well 
tested on many problems in theoretical physics (Baker and Gammel 1970, Gaunt and 
Guttmann 1974, Hunter and Baker 1973). The purpose of this paper and its companion 
paper (Wood and Fox 1975, hereafter referred to as 11) is to examine in numerical detail 
the scheme of two-variable approximants which has been developed by the Canterbury 
group. 

The applications of Canterbury approximants (CA) which are reported in I1  are to a 
selection of double power series expansions which occur in the field of critical pheno- 
mena; our purpose here is to review the performance of the CA scheme on a variety of 
known two-variable functions. Of particular interest is the ability of the CA scheme to 
determine such analytic features as the locus of singularities in the x-y plane, and the 
residues of these singularities, which correspond to the locus of critical points, and the 
values of the critical exponents in 11. For these purposes we have examined a variety of 
two-variable functions which are generalizations of the test functions used by Hunter 
and Baker (1973) in their recent review of the Pade approximant scheme for use in 
critical phenomena. Applications of CA in potential scattering theory have been given by 
Graves-Morris and Samwell (1975). The test functions we include here are: 

(i) functions with one set of singularities : 

(1  -2x+4’)-7+ e-’-.y+Y ( la )  

( 1 - 2 x + y ) - ‘ +  ex-2Y. (1b) 
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and takes the form 

such that on expansion the approximant reproduces the expansion of f ( x ,  J') to as high 
an order as possible (Chisholm and McEwan 1974, Chisholm 1973). The approximant 
in (4) is known as the general off-diagonal case (GOD) (Hughes-Jones 1973), while the 
special case n ,  = n,  = n, m ,  = m, = m, which is used here and in 11, is known as the 
simple off-diagonal case (SOD) and is denoted by CA(IZ, m). The original method of forming 
a sufficient number of linear equations for the coefficient sets (e} and { h }  (Chisholm 
1973) for the cA(n, n) was to  create n linear conditions (symmetrical in x and y) by equating 
the sums of coefficients of the n pairs of terms 

9 ('J = 1, 2, .  . . n). X y y 2 n +  1 - y x 2 n +  1 - y  y Y 

For the SOD case CA(H, m) this scheme of symmetrizing the equations is described by 
Graves-Morris er a1 (1974); it is this scheme which is used here and in 11. Under this 
algorithm the approximants in (4) are not invariant to a change of scale in either of the 
variables. Two alternative schemes have recently been suggested by Hughes-Jones and 
Graves-Morris (1974) and by Hughes-Jones and Chisholm (1975); the latter algorithm 
establishes the property of scale covariance for the approximants in (4), which is also a 
property of the Pade approximant. A comparison of all three algorithms, together with a 
computer subroutine for the GOD in (4), has been given by Graves-Morris and Roberts 
(1975a. b). 

For functions of the form 
N 
1 ci( 1 + aix + b,y)- 
i= 1 

all the approximants C A ( ~ ,  n)  (n  2 N )  are exact; thus for functions which have lines of 
branch-point singularities with the dominant form 

- (x - x,(Y))- (6 )  

in the. region of the singularities x,(y), we adopt the customary procedure of converting 
the function into its logarithmic partial derivatives and we determine the CA sequences 
to the expansions of the latter. The CA sequences show some sensitivity to the exponential 
functions in (1) and ( 2 ) ,  these functions being included to mask the singularity, and the 
coefficients of x and in the exponentials can substantially affect the range over which 
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good convergence is achieved, and also the rate of convergence. Thus from the viewpoint 
of applications, the CA sequences may be substantially affected by the function A(x,  y )  in 
an asymptotic form, 

f ( x ,  Y )  - 4 x 9  Y)(x-x , (Y))-y .  (7) 

This effect may be illustrated by the wider-ranging fits obtained for the anisotropic 
Heisenberg models than for the second-neighbour Ising model in 11. 

In $3 2 and 3 we report on the sequences of approximations to the locus of singularities 
x,(y) and to the values of the exponents y in functions ( l a x 2 4  

I t  is commonly the case in critical phenomena series expansions that the coefficient 
matrix C(cz0) is triangular in form ; thus the function has an expansion in the form 

-I 

f ( x ,  Y )  = 1 -t p l o w  (8) 
I =  1 

where P,(y) is a polynomial of degree 1. An existence condition on the C A  is that the Pade 
approximants to f ( 0 ,  y )  and f ( x ,  0) both exist, which fails in (8). To overcome this 
difficulty a rotation of d 4  in the x-y plane can be made which fills up the coefficient 
matrix (Wood and Griffiths 1974). The approximants used here are not covariant under 
such transformations ; hence to assess the reliability of this additional procedure we have 
compared the C A  sequences of a given function with and without the use of the rotation. 
If the rotation is used, the approximant obtained must be transformed back again into 
x, y before evaluating the singularities and residues. 

2. Functions with one set of singularities: (x-xx,(v))-' 

We have examined the sequences ~ ~ ( n , n - k j ) ( j  = 0, + 1) to the functions ( l a )  and ( 1 6 )  
with y = &,$ and $. As a typical example of these calculations we include here the 
diagonal ( j  = 0) sequence n = 3,5,7,9 for the case y = 3. These results are displayed 
in tables 1 and 2, which list the errors in the estimates of the singularities x,(y) and the 
exponent 7 respectively, on the interval y = ( 1 ,  - 1). Each function has been examined 
using the rotation operation (0 = 7-44) and compared with the corresponding untrans- 
formed approximants (0 = 0). 

The first observation is that the diagonal sequence is clearly converging well in the 
case of ( la) ,  with very acceptable results over the whole range [ l ,  - 11 being obtained at 
c ~ ( 9 , 9 ) .  A comparison of(1a)and (lb) in the 6 = 0 case clearly shows that the differences 
in the interference exponential terms have influenced the rate of convergence ; hence in 
applications, the amplitude functions A ( x ,  y )  in (7) may be significant in this respect. 
Differences in convergence of this type are often maintained in the rotated functions 
(6  = n/4). 

To illustrate the comparison of the 0 = 0 and 9 = n/4 cases we use ( la) ,  which is 
clearly converging well at c~(9,9). A strqking fedtiire is that the errors are commonly 
out of phase in the half-ranges 0 + & 1 ; thus on d relative scale when the errors !or 
Q = 0 are small those for 0 = n/4 are large and vice versa. The errors in x,(y) on [ - 1 ,  11 
for the c~(7 ,7)  are shown in figure 1. We conjecture that the errors in both x,(y) and 
will be smaller, the nearer to one of the axes the singularities are. Thus in figure 2 the 
line of singularities is shown with respect to the B = 0 and 0 = n,'4 axes. This rotation 
has moved one end of the interval [ l ,  - 13 closer to an axis while the other end has been 
displaced further away. 



1368 D Roberts, H P Grifiths and D W Wood 



The analysis of double po\.r.er series using Canterbury approximants 1369 

Y 

Figure 1.  The errors in the C A ( ~ .  7 )  to the singularities of function ( l a )  with (0  = x 4. denoted 
by x ) and without (0 = 0. denoted by 0) a rotation of the axes 

Figure 2. The locus of the singularities of function ( l a )  in  relation to the original and rotated 
set of axes. 

3. Functions with two sets of singularities: (x -~ , fJ ) ) -~ (x  - x ~ @ ) ) - ~ '  

The behaviour of the CA sequences for function (2a) is typical of the cases we have 
examined with two sets of singularities x,(y) and x,.(y); some of the results for the diagonal 
sequence CA(H, n )  are shown in tables 3 and 4 where again we list the errors in the loci of 
the singularities, and the two exponents respectively. Convergence improves markedly 
beyond c ~ ( 5 , 5 ) ,  which is illustrated in figure 3, and an excellent fit to 

(9) X,(J) 5s 1 - zx -4y = 0 

over y = - 0.8 to 0.6 is obtained at c ~ ( 9 , 9 ) ,  but a less accurate representation of the 
second line 

X,.(J) = 1 -.Y -+y = 0 (10) 

is reached by c ~ ( 9 , 9 ) .  This difference in convergence between x,(y) and x , . (y )  again 
reflects the fact that one can expect the results to be less accurate, the farther away the 
singularities are from the axes. The errors quoted for x,.(y) for y -= -0.4 may be related 
to the appearance of spurious roots; we have commonly observed that the approximants 
yield split real roots, or complex roots over subintervals of a locus x,(y). 

A rotation of the axes can sometimes improve the approximants. This is illustrated 
in table 5, where the errors for the singularities and exponents of the function (2b) of 



1370 D Roberts, H P Grtfiths and D W Wood 

Table 3. Errors in the estimates of the singularities x,(y) = 1 - 2 x - f y  = 0, and x&) I 

1 - x - 4 y  = 0 in function (2a) obtained from the diagonal CA sequence. The errors are given 
in units of The points marked * correspond to the probably spurious points shown 
in figure 3. 

CA(5, 5 )  CA(7,7) CA(9,9) 

I' 

- 1.0 
- 0.8 
- 0.6 
- 0.4 
- 0.2 

0 
0.2 
0.4 
0.6 
0.8 
1 .o 

X J Y )  

- 90 
- 70 
- 40 
- 20 
- 6  
- 3  
- 1.2 
- 1.1 

0.7 
- 30 
-100 

XdY) 

- 7000* 
- 5000* 
- 2000* 
- 600 
- 90 
- 47 
- 15 

50 
150 
320 
570 

- 110 
- 70 
- 30 
- 5  

8 
- 6  
- 2  
-0.1 

0.3 
I 3  
60 

X J Y )  

- 8000* 
- 7000* 
- 7000* 
- 550 
- 200 
- 70 
- 20 
-9 
- 20 
- 60 
- 170 

~- 
7 

- 3  

- 1.5 
- 1.1 
- 0.6 
- 0.2 
- 0.03 
+ 0.04 

- 
- 150 

40 
10 

- 2  
- 2  
- 0.2 

6 
24 
97 

Table4. Errors in the residues 7 = 4 and 7' = 3 of the singularities x,(y) and xJy )  in table 4, 
in units of The points marked * correspond to the probably spurious points shown 
in figure 3. 

- 1.0 -250 -1500* -260 -1400* - - 

- 0.8 -180 -1200* -190 -1300' - 50 
- 0.6 -110 -400' -110 -1500* - 52 160 

- 0.2 - 33 13 73 - 42 - 20 14 
0 - 17 - 0.2 - 8  - 8  - 10 8 

- 

- 0.4 - 63 - 50 - 44 - 200 - 23 - 106 

0.2 - 8  3 - 8  -0.1 - 5  4 
0.4 - 3  37 - 4  - 0.4 - 2  2 
0.6 -0.1 110 - 2  - 12 1 0.2 
0.8 11 200 - 8  - 34 
1 .o 70 300 - 87 2 

- 13 
- 160 

- 

- 

c ~ ( 9 , 9 )  are given. Even though the results for x,(y)  are very good over the whole range, 
the errors in the region y -+ 1 can be reduced considerably by rotating the axes ; the errors 
in brackets are those obtained using a rotation of 8 = 744. This operation is illustrated 
in figure 4, where the area of improvement is the region marked R ;  thus only one interval 
of the y range near y = 1 will be improved on the line 

x J y )  1 -4. -1. 2Y = 0 

since this line is parallel to and far away from the new x axis. This is reflected in table 5, 
where real roots are obtained only for the last two values of y .  

Our overall conclusions from numerical experiments of this type using the diagonal 
and symmetric off-diagonal approximants are that the C A ( ~ ,  n+j) ( j  = 0, -t 1) sequences 
compare favourably with results obtainable using Pade approximants on single-variable 
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I I 
-0.8 -0.4 0 0.4 0.8 

Figure 3. The estimates of x & y )  and x,.(y) (equations (9) and ( I O ) )  obtained from the C A ( ~ ,  5 )  
to function (20). x denotes probably spurious roots. 

Table 5. The errors in the singularities x , (y )  1 - x - i y  = 0 and x J y )  = 1 - f x - i y  = 0 
in units of  in units of I O - '  of the 
function (2b) obtained from the cA(9.9). The figures in brackets are the corresponding errors 
obtained under a rotation of the axes through a/4, where an approximation to the real root 
IS obtained. 

and the errors in the exponents : = and y '  = 

- 1.0 
- 0.8 
- 0.6 
- 0.4 
- 0.2 

0 
0.2 
0.4 
0.6 
0.8 
1 .o 

1 i 1 )  
1 i 1 )  

0.7 (1)  
0.3 (4) 
0.1 ( 7 )  

0.07 (7)  
0.02 (3) 

1 (0.08) 
I (0.06) 
3 ( - 0.004) 
7 ( - 0.04) 

12 (10) 
8 (8) 
5 (9)  
2 (20) 
1 (20) 

0.6 (20) 
0.3 (10) 

1 (3) 
4 (0.3) 

10 (0.01) 
28 (0.3) 

- 

- 60 
- 300 
-110 
- 30 
- 1 1  
- 60 
- 80 
- 150 (20) 
- ( - 1 )  

- 

- 430 
- 150 
- 56 
- 20 
- 59 

15 
2 
80 (40) 
- ( - 0.4) 

Figure 4. R is the region of improvement in the estimates of x,(y) and xJy) shown in table 5 
on using the rotation operation. 
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power series (Hunter and Baker 1973) when the singularities lie close to one of the axes. 
This effect is seen clearly in I1  in determining the variations of the critical temperature 
TJa) with variations in some microscopic parameter a, using series expansions known 
in the field of critical phenomena. Although these approximants are not covariant 
under rotations of the axes, we have demonstrated that it can be a useful procedure to 
perform this operation, which is likely to be a necessary operation in many applications. 
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